WHAT IS UNSUPERVISED LEARNING ?

Unsupervised learning:



Unsupervised learning is the training of machine using information that is neither classified nor labeled and allowing the algorithm to act on that information without guidance. Here the task of machine is to group unsorted information according to similarities, patterns and differences without any prior training of data.
Unlike supervised learning, no teacher is provided that means no training will be given to the machine. Therefore machine is restricted to find the hidden structure in unlabeled data by our-self.
Unsupervised learning is where you only have input data (X) and no corresponding output variables. The goal for unsupervised learning is to model the underlying structure or distribution in the data in order to learn more about the data.

Unsupervised learning classified into two categories of algorithms: 
  • Clustering: A clustering problem is where you want to discover the inherent groupings in the data, such as grouping customers by purchasing behavior.
  • Association: An association rule learning problem is where you want to discover rules that describe large portions of your data, such as people that buy X also tend to buy Y.


Some popular examples of unsupervised learning algorithms are:
·         k-means for clustering problems.
·         Apriori algorithm for association rule learning problems.


Comments